
COMP1680
(2019/20)

Clouds, Grids and
Virtualisation

 Contribution:
60% of course

Course Leader:
Dr Catherine Tonry

OpenMP
Coursework

 Deadline Date:
Wednesday
15/12/2021

This coursework should take an average student who is up-to-date with tutorial work
approximately 30 hours

Feedback and grades are normally made available within 15 working days of the
coursework deadline

Learning Outcomes:
Characterise and critically evaluate high performance computing based architectures and
their suitability for given applications.
Implement and execute applications using shared and distributed memory programming
paradigms.
Describe and critically discuss the roles and applications of cloud and grid computing.

Plagiarism is presenting somebody else's work as your own. It includes: copying
information directly from the Web or books without referencing the material;
submitting joint coursework as an individual effort; copying another student's
coursework; stealing coursework from another student and submitting it as your own
work. Suspected plagiarism will be investigated and if found to have occurred will be
dealt with according to the procedures set down by the University. Please see your
student handbook for further details of what is / isn't plagiarism.

All material copied or amended from any source (e.g. internet, books) must be referenced
correctly according to the reference style you are using.

Your work will be submitted for plagiarism checking. Any attempt to bypass our plagiarism
detection systems will be treated as a severe Assessment Offence.

Coursework Submission Requirements
• An electronic copy of your work for this coursework must be fully

uploaded by 23:30 on the Deadline Date of Wednesday 15/12/2021 using
the link on the coursework Moodle page for COMP1680.
• For this coursework you must submit a PDF document and a zip file of

your code. In general, any text in the document must not be an image (i.e.
must not be scanned) and would normally be generated from other
documents (e.g. MS Office using "Save As .. PDF"). An exception to this is
hand written mathematical notation, but when scanning do ensure the file
size is not excessive.
• There are limits on the file size (see the relevant course Moodle page).

• Make sure that any files you upload are virus-free and not protected by a

password or corrupted otherwise they will be treated as null submissions.
• Your work will not be printed in colour. Please ensure that any pages with

colour are acceptable when printed in Black and White.
• You must NOT submit a paper copy of this coursework.

• All courseworks must be submitted as above. Under no circumstances

can they be accepted by academic staff

The University website has details of the current Coursework Regulations,
including details of penalties for late submission, procedures for
Extenuating Circumstances, and penalties for Assessment Offences. See
http://www2.gre.ac.uk/current-students/regs

http://www2.gre.ac.uk/current-students/regs

Detailed Specification

This coursework is to be completed individually.

To complete this assignment you will need the source code provided at the following URLs.

https://moodlecurrent.gre.ac.uk/mod/resource/view.php?id=1660219

https://moodlecurrent.gre.ac.uk/mod/resource/view.php?id=1660220

You are provided with a two C program codes (called jacobi2d.c and gauss2d.c) that solve a

rectangular 2 dimensional heat conductivity problem using the Jacobi and Gauss-Seidel iterative

methods.

This code can be compiled and linked to produce a conventional executable files called jacobiSerial

and gaussSerial by using the following commands:

gcc jacobi2d.c –o jacobiSerial

gcc gauss2d.c –o gaussSerial

To run the executable type in the executable name: jacobiSerial or gaussSerial

As you implement each of the following 4 steps make sure that you retain and do not overwrite

previous versions of your solutions.

Step 1 (25 Marks)

You are required to compute a temperature distribution for a rectangular 2D problem with

boundary conditions set at top 100°C, bottom 20°C, left 30°C and right 40°C with a range of problem

sizes. To do this you are required to modify the codes to:

• reflect the boundary conditions described above

• report the execution time Record the run-time of your code under a range of problem sizes

using different levels of compiler optimization.

Be advised that:

• it is possible that aggressive optimization will break the code

• you will need to stop the results from printing if you are to obtain realistic measurements of

the execution time.

Step 2 (30 Marks)

You are then required to modify the applications you created in step 1 to produce a basic parallel

version of the codes using OpenMP. The following commands will compile your parallel version on a

platform that has OpenMP installed:

gcc -fopenmp jacobiOpenmp.c –o jacobiOpenmp

gcc -fopenmp gaussOpenmp.c –o gaussOpenmp

The parallel codes must include timers to report the parallel run-time of the code. This version must

be tested to establish correct operation using 1, 2, 4 and 8 threads/processors, regardless of

performance. (These versions may run on any platform you choose as performance is not an issue at

this stage.)

https://moodlecurrent.gre.ac.uk/mod/resource/view.php?id=1660219
https://moodlecurrent.gre.ac.uk/mod/resource/view.php?id=1660220

Include in your report, the result for a 20x20 problem size for 1,2,4 and 8 processors to demonstrate

the code works correctly.

Run the Gauss-Seidel code for only 1 iteration using 1 and 2 threads for a 20x20 problem size.

Output the result along with the timings. Discuss the differences in the solutions.

Step 3 (30 Marks)

Using the cms-grid machines you are to run performance tests with the OpenMP implementation

you created in step 2. This will require that you remove most of the print output from the code and

increase the problem size to provide sufficient work to demonstrate useful speedup. You are

expected to provide speedup results:

• for a range of problem sizes, you are unlikely to see much speedup for small domains, use at least

100x100+

• for a range of number of threads (from 2 up to 8 threads) In calculating the speedup of your

parallel code you should use the optimized single processor version of your code you produced in

step 1 and compare to this. You will need to apply similar compiler optimizations to your parallel

code. Please list your runtimes in a suitable unit.

Step 4 (15 Marks)

Using different OpenMP directives and clauses you are to further modify your OpenMP application

to improve the parallel performance. You are expected to provide results that permit comparison

with those you obtained in steps 2 and 3. Comment on the differences between optimising the

Jacobi and Gauss-Seidel Methods.

Deliverables

• A PDF file with your report

 •A ZIP file with the source code for your solutions.

Your report is required to provide details of your implementation of steps 1 to 4 as described above.

The report should include discussion of your solutions and provide a clear description of; the code

changes you have implemented, your compilation and execution processes and your test cases. For

steps 3 and 4 you are expected to provide tabular and graphical results. Comment on the

differences between the two methods and the effect on parallelisation. Your zip file should provide

suitably named source code files for each of your implementations.

Grading Criteria

To achieve a pass mark it is expected that an outline solution will be provided in which at least a

basic attempt is evident with some progress.

 To achieve a mark in the merit range it is expected that a good solution is provided in which there is

clear evidence of progress and understanding.

To achieve a distinction mark it is expected that high quality solutions and reports are provided in

which there is clear evidence of competence in practical, theoretical and presentation skills.

If you are unsure about any of these instructions, then please email your tutor or make an

appointment to see your tutor as soon as possible.

